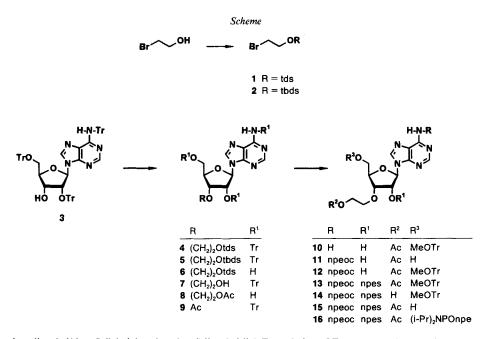
64. Nucleotides

Part XLVII¹)

Synthesis of 3'-Deoxyadenylyl-(2'-5')-3'-deoxyadenylyl-(2'-5')-3'-O-(2-hydroxyethyl)adenosine and 3'-Deoxyadenylyl-(2'-5')-3'-deoxyadenylyl-(2'-5')-3'-O-{2-[(cholest-5-en-3β-yloxy)carbonyloxy]ethyl}adenosine: A New Type of (2'-5')Adenylate Trimer Conjugate

by Cornelia Hörndler and Wolfgang Pfleiderer*

Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-78434 Konstanz


(20. XI. 95)

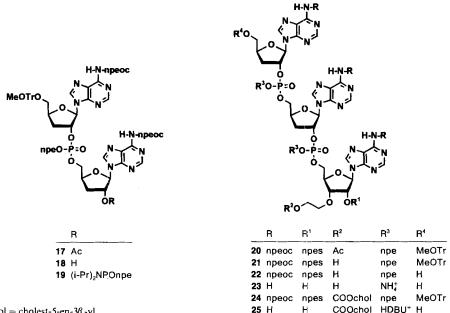
A suitably protected adenosine derivative bearing an acetyl-protected 2-hydroxyethyl moiety in 3'-O-position was attached to the 2'-terminus of a cordycepin (3'-deoxyadenosine) dimer. Coupling was performed by phosphoramidite chemistry using two alternative approaches – condensation of 5'-phosphoramidite 16 with 2'-OH cordycepin dimer 18 and condensation of dimeric cordycepin phosphoramidite 19 with 5'-OH adenosine derivative 15 – of which the latter synthesis worked best (\rightarrow 20). After cleavage of the acetyl protecting group (\rightarrow 21), cholesteryl carbonate was introduced into the OH function of the spacer (\rightarrow 24). Final deblocking of trimer 24 with, or trimer 21 without the cholesterol moiety afforded the modified cordycepin conjugates 25 and 23, respectively.

1. Introduction. – The discovery of the naturally occurring (2'-5') adenylates [2] [3] is closely connected to the elucidation of interferon action, the cellular response to virus infection. In 1981, the antiviral activity and enhanced metabolic stability of the 3'-deoxy analogue (= cordycepin) trimer was first reported by *Doetsch et al.* [4]. Since then, more details of the antiviral properties of the cordycepin trimer have been published [5-8]. Its most striking feature is the inhibition of HIV-1 RT (reverse transcriptase) [9] by interfering with the anticodon region of tRNA^{Lys.3}, the primer of RT [10] [11]. More recently, it was shown [12] that the antiviral activity of the cordycepin trimer core 3'd(A2'p5'A2'p5'A) can be augmented up to 1000-fold by the introduction of lipophilic moieties such as cholesterol (cholest-5-en- 3β -ol). Cholesterol improves most likely cell penetration of the polyanionic oligonucleotides [13-20]. Contrary to the wide-spread practice using phosphordiester bonds for conjugate coupling [21], Wasner et al. [12] attached the cholesterol moiety via ester linkages to the 2'- and 5'-end of the cordycepin trimer core. To investigate the antiviral properties of cordycepin trimer core derivatives with an ether-bound spacer, we wish to report on the synthesis of the title compounds 23 and 25 bearing a 2-hydroxyethyl spacer attached to the 3'-hydroxy function of the 2'-terminal adenosine moiety.

¹) Part XLVI: [1].

2. Syntheses. – The synthesis of the title compounds 23 and 25 was the result of a multistep procedure involving as the key part the condensation of an appropriately protected cordycepin dimer (18, 19) and the 3'-O-(acetoxyethyl)adenosine derivatives 15 and 16, respectively. The latter compound was synthesized from adenosine which was first converted into its N^6 ,2'-O,5'-O-tris(trityl) derivative 3 by a known procedure [22–24]. The alkylations of 3 were performed with 1-bromo-2[dimethyl(thexyl)silyloxy]- (1) and 1-bromo-2-[(tert-butyl)dimethylsilyloxy]ethane (2) [25] to give, under Williamson conditions using NaH as base, the 3'-O-alkyl ethers 4 and 5 in 68 and 81% yield,

tds = dimethyl(thexyl)silyl, tbds = (tert-butyl)dimethylsilyl, Tr = trityl, MeOTr = monomethoxytrityl, npeoc = 2-(4-nitrophenyl)ethyl, npes = 2-(4-nitrophenyl)ethoxysulfonyl, i-Pr = isopropyl


respectively. The silyl protecting groups turned out to be unstable under detritylation conditions, since treatment of 5 with ZnBr₂ [26] under aprotic conditions gave the silylated compound 6 only in 40% yield. Therefore, the silyl group in 4 or 5 was cleaved off with fluoride ions (Bu₄NF) in THF to give 3'-O-(2-hydroxylethyl)- N^6 ,2'-O,5'-O-tris(trityl)-adenosine (7) in 88 and 77% yield respectively. Then, compound 7 was acety-lated and subsequently detritylated with 80% AcOH/H₂O to afford intermediate 8 in 81% overall yield. Attempts to alkylate 3 with 2-bromoethyl acetate directly led only to the 3'-O-acetyl derivative 9 in 81% yield.

In a series of steps, compound 8 was then converted into the monomeric building block 16. Monomethoxytritylation of 8 gave 10 only in 54% yield. Better results were obtained when the 6-amino function of the base was protected first by the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) group [27-29] using 3-methyl-1-[2-(4-nitrophenyl)-

ethoxycarbonyl]-1H-imidazolium chloride under activation with 4-(dimethylamino)pyridine (DMAP) to give compound 11 in 78% yield. Selective monomethoxytritylation afforded derivative 12 then in 81% yield. The 2'-OH position was finally protected by the 2-(4-nitrophenyl)ethoxysulfonyl (npes) group [30] leading to 13 in 85% yield. The npes group was chosen in preference to the npeoc blocking group due to its greater stability under deacetylation conditions. This was verified by treatment of 13 with K₂CO₃/MeOH to give 14 in 63% yield. Furthermore, detritylation of 13 with 2% toluene-4-sulfonic acid in CHCl₃/MeOH led to 15 in 94% yield, and its conversion into the corresponding 5'-phosphoramidite 16 could be performed with bis(diisopropylamino)[2-(4-nitrophenyl)ethoxy]phosphane [31] in the presence of 1H-tetrazole in 59% yield.

The second component for the trimer formation was prepared from 3'-deoxy-5'-O-(monomethoxytrityl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl] $\rightarrow 5'$ -2'-O-acetyl-3'-deoxy-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine (17) [32] yielding 18 by deacetylation with $K_2CO_1/MeOH$ in 80%. Analogously to the synthesis of 16, the dimeric phosphoramidite 19 was obtained again in 80% yield from 18.

The synthesis of trimer 20 was realized by two different routes - coupling either the 5'-phosphoramidite 16 with the 2'-OH group of cordycepin dimer 18 or the dimeric cordycepin phosphoramidite 19 with the 5'-OH function of adenosine derivative 15 - invields of 78 and 87%, respectively. Cleavage of the acetyl group in 20 with K₂CO₃ gave intermediate 21 in 60% yield. Total deprotection of 21 was achieved by subsequent acid treatment to form compound 22 in 90% yield, and DBU (1,8-diazabicyclo[5.4.0]undec-7ene) treatment leading finally to 23 in 59% yield. On the other hand, intermediate 21 gave, on reaction with cholesteryl chloroformate in presence of 1-methyl-1H-imidazole

 $chol = cholest-5-en-3\beta -yl$

and DMAP, the fully protected conjugate 24 in 78% yield, and subsequent stepwise deblocking with DBU and acid without purification of intermediates afforded the conjugate 25 in 85% yield as colorless powder. Contrary to the deblocked trimer 23 the cholesterol conjugate 25 was insoluble in H₂O, but soluble in DMSO, various buffers, and ternary mixtures of CH₂Cl₂/MeOH/H₂O.

Experimental Part

General. TLC: Precoated silica gel TLC sheets F 1500 LS 254 from Schleicher & Schüll. Prep. TLC: silica gel 60 PF_{254} (Merck). Prep. column flash chromatography (FC): silica gel for flash chromatography (Baker); 0.2 bar. Ion-exchange chromatography: Pharmacia (detection at 260 nm; flow rate 1 ml/min); column XK 16/70, packed with DEAE Sephadex A 25 (HCO₃; Pharmacia). HPLC: Merck-Hitachi L 6200, L-3000 photo diode array detector; column RP 18, LiChrosphere 125 × 4 mm, 5 µm, Merck; flow rate 1 ml/min. UV/VIS: Perkin Elmer Lambda 5; λ_{max} in nm (log ε). ¹H-NMR: Bruker AC 250; δ in ppm rel. to CHCl₃ ((D₆)DMSO). ³¹P-NMR: Jeol JM 6X-400; δ in ppm rel. to 85% H₃PO₄ soln.

2-Bromo-1-[dimethyl(1,1,2-trimethylpropyl)silyloxy]ethane (1). To an ice-cooled mixture of dimethyl-(thexyl)silyl chloride (dimethyl(1,1,2-trimethylpropyl)silyl chloride; 50 ml, 0.25 mol) and 1H-imidazole (23 g, 0.34 mol) in abs. DMF (100 ml) was added dropwise a soln. of 2-bromoethanol (20 ml, 0.28 mol) in abs. DMF (100 ml). The mixture was stirred overnight, diluted with light petroleum ether (250 ml), and washed with H₂O (2 × 250 ml). The aq. phases were reextracted with light petroleum ether (3 × 250 ml), and the combined org. layer was dried (Na₂SO₄) and evaporated. The residue was submitted to vacuum destillation (73°/0.4 mbar): 53 g (80%) of 1. Colorless oil. ¹H-NMR (CDCl₃): 3.85 (t, CH₂O); 3.37 (t, CH₂Br); 1.60–1.50 (m, CH); 0.85 (m, 4 MeC); 0.10 (s, 2 MeSi). Anal. calc. for C₁₀H₂₃BrOSi (267.3): C 44.94, H 8.67; found: C 45.22, H 8.58.

3'-O-{2-[Dimethyl(1,1,2-trimethylpropyl)silyloxy]ethyl}-N⁶,2'-O,5'-O-tris(triphenylmethyl)adenosine (4). A mixture of N⁶,2'-O,5'-O-tris(triphenylmethyl)adenosine (3) [22-24] (18.7 g, 19 mmol) and 80% oil-immersed NaH (5.0 g, 170 mmol) in abs. MeCN (500 ml) was stirred at r.t. for 20 min, then NaI (1.5 g, 10 mmol) was added. A soln. of 1 (30.0 g, 110 mmol) in abs. MeCN (10 ml) was added dropwise, and the mixture was kept overnight. Then it was diluted with AcOEt (250 ml) and washed with phosphate buffer pH 7 (250 ml) and sat. NaCl soln. (3 × 250 ml). The aq. phases were reextracted with AcOEt (3 × 250 ml), and the combined org. layer was dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel, 6 × 30 cm, light petroleum ether \rightarrow light petroleum ether/AcOEt 2:1): 15.4 g (68%) of 4. Amorphous solid. UV (MeOH): 282 (sh, 4.18), 274 (4.32), 270 (sh, 4.31). ¹H-NMR (CDCl₃): 7.70, 7.66 (2s, H-C(2), H-C(8)); 7.38-7.00 (m, 45 H of Tr); 6.90 (s, NH); 6.04 (d, J = 7.4, H-C(1')); 5.13 (dd, H-C(2')); 4.12 (m, H-C(4')); 3.69-3.63 (m, CH₂Otds); 3.30-3.00 (m, CH₂O-C(3'), 2 H-C(5')); 2.79 ('d', H-C(3')); 1.60-1.50 (m, CH); 0.87-0.82 (m, 4 MeC); 0.11, 0.08 (2s, 2 MeSi, diast.) Anal. calc. for C₇₇H₇₇N₅O₅Si (1180.6): C 78.34, H 6.57, N 5.93; found: C 78.13, H 6.67, N 5.80.

3'-O-{2-*[* (tert-*Butyl*)*dimethylsilyloxy*]*ethyl*}-N⁶,2'-O,5'-O-*tris*(*triphenylmethyl*)*adenosine* (**5**). As described for **4**, with **3** (1.00 g, 1.0 mmol), 80% oil-immersed NaH (0.29 g, 9.6 mmol), abs. MeCN (30 ml), NaI (0.12 g, 0.8 mmol), and 2-bromo-1-[(*tert*-butyl)dimethylsilyloxy]ethane (2) [22]. Workup with AcOEt (3×50 ml) and sat. NaCl soln. (3×50 ml) and purification by FC (silica gel, 3×8 cm, light petroleum ether→light petroleum ether/AcOEt 3:1) gave 0.92 g (81%) of **5**. Amorphous solid. UV (MeOH): 280 (sh, 4.24), 274 (4.33), 270 (sh, 4.32). ¹H-NMR (CDCl₃): 7.70, 7.67 (2*s*, H-C(2), H-C(8)); 7.38-6.92 (*m*, 45 H of Tr, NH); 6.05 (*d*, *J* = 7.3, H-C(1')); 5.10 (*dd*, H-C(2')); 4.13 (*m*, H-C(4')); 3.73-3.60 (*m*, CH₂Otbds); 3.25-3.05 (*m*, CH₂O-C(3'), 2 H-C(5')); 2.79 (*dd*, H-C(3')); 1.56 (*s*, ½ H₂O); 0.87 (*s*, 3 MeC); 0.07, 0.04 (2*s*, 2 MeSi, diast.). Anal. calc. for C₇₅H₇₃N₅O₅Si·½ H₂O (1161.5): C 77.56, H 6.41, N 6.03; found: C 77.33, H 6.48, N 6.21.

3'-O-{2-[(tert-Butyl)dimethylsilyloxy]ethyl}adenosine (6). A mixture of 5 (0.20 g, 0.17 mmol), dry ZnBr₂ (0.21 g, 0.94 mmol), abs. toluene (1.5 ml), and abs. nitromethane (3.5 ml) was kept 5 h at 70°. Then the mixture was diluted with AcOEt (50 ml) and washed with phosphate buffer pH 7 (3 × 50 ml). The aq. phases were reextracted with AcOEt (3 × 50 ml), and the combined org. phase was dried (Na₂SO₄) and evaporated. The residue was purified by FC (silica gel, 2 × 10 cm, toluene/AcOEt 1:1 \rightarrow 1:1 + 10% MeOH): 0.03 g (40%) of 6. Amorphous solid. UV (MeOH): 259 (4.18). ¹H-NMR ((D₆)DMSO): 8.36, 8.14 (2s, H-C(2), H-C(8)); 7.39 (br. s, NH₂); 5.88 (d, J = 6.1, H-C(1')); 5.50 (br. s, OH-C(5')); 5.41 (d, OH-C(2')); 4.33 (dd, H-C(2')); 4.04 (m, H-C(3'), H-C(4')); 3.75-3.61 (m, CH₂Otbds, CH₂O-C(3'), 2 H-C(5')); 3.38 (br. s, '4 H₂O); 0.91 (s, 3 MeC); 0.13 (s, 2 MeSi). Anal. calc. for C₁₈H₃₁N₅O₅Si · ½ H₂O (434.6): C 49.75, H 7.19, N 16.11; found: C 49.60, H 7.57, N 16.01.

3'-O-{2-(Hydroxyethyl)-N⁶, 2'-O,5'-O-tris(triphenylmethyl)adenosine (7). a) A mixture of 4 (15.4 g, 13 mmol), Bu₄NF · 3 H₂O (4.5 g, 14 mmol), and abs. THF (30 ml) was kept at r.t. for 4 h. Then, it was diluted with AcOEt (150 ml) and washed with H₂O (3 × 100 ml). The aq. phases were reextracted with AcOEt (2 × 100 ml), the combined org. layer was dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel, 5 × 13 cm, toluene- \rightarrow toluene/AcOEt 1:1): 11.9 g (88%) of 7. Amorphous solid. UV (MeOH): 284 (sh, 4.16), 274 (4.34), 268 (sh, 4.33). ¹H-NMR ((D₆)DMSO): 8.35 (br. s, NH); 7.50, 7.49 (2s, H-C(2), H-C(8)); 7.38-7.00 (m, 45 H of Tr); 6.14 (d, J = 7.7, H-C(1')); 5.11 (dd, H-C(2')); 4.61 (t, OH); 4.04 (m, H-C(4')); 3.49-2.88 (m, CH₂OH, CH₂O-C(3'), 2 H-C(5')); 3.34 (s, H₂O); 2.45 (m, H-C(1')); 5.18 (dd, H-C(2')); 4.08 (m, H-C(4')); 3.63 (m, CH₂OH); 3.33-3.23, 3.07-2.95 (m, CH₂O-C(3'), 2 H-C(5')); 2.74 ('d', H-C(3')); 1.70 (br. s, H₂O). Anal. calc. for C₆₆H₅₉N₅O₅·H₂O (1056.3): C 78.46, H 5.63, N 6.63; found: C 78.60, H 5.74, N 6.72.

b) As described in a, with 5 (2.6 g, 2.3 mmol), $Bu_4NF \cdot 3H_2O$ (0.7 g, 2.3 mmol), and abs. THF (5 ml). Workup and purification by FC gave 1.8 g (77%) of 7. Amorphous solid.

3'-O-(2-Acetoxyethyl)adenosine (8). A soln. of 7 (1.8 g, 1.7 mmol) and Ac₂O (8.2 ml, 87 mmol) in abs. pyridine (30 ml) was stirred at r.t. for 1 h. Toluene was added and the soln. evaporated. The residue was dried overnight, then 80% AcOH/H₂O (20 ml) was added. The mixture was kept 1 h at 100°, evaporated, co-evaporated with H₂O and MeOH, and purified by FC (silica gel, 2×7 cm, CH₂Cl₂→CH₂Cl₂/MeOH 95:5): 0.50 g (81%) of 8. Amorphous solid. UV (MeOH): 258 (4.17). ¹H-NMR ((D₆)DMSO): 8.36, 8.14 (2s, H-C(2), H-C(8)); 7.37 (s, NH₂); 5.87 (d, J = 6.4, H-C(1')); 5.53-5.48 (m, OH-C(2'), OH-C(5')); 4.75 (dd, H-C(2')); 4.18 (t, CH₂OAc); 4.03 (m, H-C(3'), H-C(4')); 3.91-3.55 (m, CH₂O-C(3'), 2 H-C(5')); 2.03 (s, Me). Anal. calc. for C₁₄H₁₉N₅O₆ (353.3): C 47.59, H 5.42, N 19.82; found: C 47.86, H 5.68, N 19.54.

3'-O-Acetyl-N⁶,2'-O,5'-O-tris(triphenylmethyl) adenosine (9). As described for 4, with 3 (0.22 g, 0.22 mmol), 80% oil-immersed NaH (0.04 g, 1.2 mmol), abs. MeCN (10 ml), NaI (0.005 g, 0.03 mmol), and 2-bromoethyl acetate (0.12 g, 0.71 mmol). Workup and purification by FC yielded 0.19 g (81%) of 9. Amorphous solid. UV (MeOH): 285 (sh, 4.13), 274 (4.34), 270 (sh, 4.33). ¹H-NMR ((D₆)DMSO): 8.41 (s, NH); 7.62, 7.49 (2s, H–C(2), H–C(8)); 7.49–6.95 (m, 45 H of Tr); 6.32 (d, J = 8.0, H–C(1')); 5.28 (dd, H–C(2')); 3.95 (m, H–C(4')); 3.49 ('d', H–C(3')); 3.03, 2.95 (m, 2 H–C(5')); 1.96 (s, Me). Anal. calc. for C₆₉H₅₇N₅O₅ (1036.2): C 79.98, H 5.54, N 6.76; found: C 79.73, H 5.18, N 6.51.

3'-O-(2-Acetoxyethyl)-5'-O-[(4-methoxyphenyl)diphenylmethyl]adenosine (10). After co-evaporation with dry pyridine (2×5 ml), **8** (0.37 g, 1.0 mmol) and monomethoxytrityl chloride (MeOTrCl; 0.39 g, 1.3 mmol) were stirred in dry pyridine (10 ml) at r.t. for 3 d. Then, more MeOTrCl (0.17 g, 0.5 mmol) was added and the soln. stirred for another 3 d. The mixture was evaporated and co-evaporated with toluene (3×10 ml). The residue was dissolved in AcOEt (50 ml), the soln. washed with sat. NaHCO₃ soln. (3×50 ml), and the aq. phase reextracted with AcOEt (3×50 ml). The combined org. layer was dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel, 3×7 cm, CH₂Cl₂→CH₂Cl₂/MeOH 95:5): 0.35 g (54%) of 10. Amorphous solid. UV (MeOH): 259 (4.20), 233 (4.25). ¹H-NMR ((D₆)DMSO): 8.26, 8.08 (2s, H-C(2)); H-C(8)); 7.34-7.18 (m, 12 H of MeOTr, NH); 6.77 (d, 2 H o to MeO); 5.90 (d, J = 4.6, H-C(1')); 5.58 (d, OH-C(2')); 4.28 (dd, H-C(2')); 4.22 ('t', H-C(3')); 4.14 (m, CH₂OAc, H-C(4')); 3.83-3.62 (m, MeO, CH₂O-C(3')); 3.23 (m, 2 H-C(5')); 1.91 (s, Me). Anal. calc. for C₁₄H₁₅N₅O₇ (625.7): C 65.27, H 5.64, N 11.19; found: C 65.06, H 5.81, N 10.54.

3'-O-(2-Acetoxyethyl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine (11). À mixture of 8 (1.84 g, 5.2 mmol), hexamethyldisilazane (13 ml), abs. dioxane (15 ml), and a catalytic amount of $(NH_4)_2SO_4$ was refluxed for 4 h and then evaporated. The residue was dissolved in toluene (50 ml). After filtration, the soln. was evaporated. Then 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-1H-imidazolium chloride [27] (3.2 g, 10 mmol) and CH₂Cl₂ (100 ml) were added. The nixture was kept overnight and filtered, and the filtrate evaporated. To the residue, MeOH (100 ml) and Et₃N (10 ml) were added, and 2.21 g (78%) of 11 crystallized. Colorless crystals. M.p. 165°. UV (MeOH): 266 (4.45). ¹H-NMR ((D₆)DMSO): 10.64 (s, NH); 8.69, 8.63 (2s, H-C(2), H-C(8)); 8.17 (d, 2 H ot NO₂); 7.62 (d, 2 H m to NO₂); 5.99 (d, J = 5.6, H-C(1')); 5.61 (d, OH-C(2')); 5.22 (t, OH-C(5')); 4.77 (dd, H-C(2')); 3.13 (t, CH₂C of npeoc); 2.03 (s, Me). Anal. calc. for C₂₃H₂₆N₆O₁₀ (546.5): C 50.55, H 4.99, N 15.38; found: C 50.55, H 4.94, N 14.86.

3'-O-(2-Acetoxyethyl)-5'-O-[(4-methoxyphenyl)diphenylmethyl]-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine (12). After co-evaporation with dry pyridine (2 × 5 ml), 11 (0.85 g, 1.6 mmol) and MeOTrCl (0.58 g, 1.9 mmol) were stirred in dry pyridine (20 ml) at r.t. for 1 d. Then, more MeOTrCl (0.10 g, 0.3 mmol) was added and the soln. stirred for another 2 d. The mixture was evaporated and co-evaporated with toluene (3 × 10 ml). The residue was dissolved in CHCl₃ (100 ml) and washed with sat. NaHCO₃ soln. (3 × 100 ml), the aq. phase reextracted with CHCl₃ (3 × 50 ml), the combined org. layer dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel, 3×7 cm, toluene/AcOEt 1:1->toluene/AcOEt/MeOH 10:10:1): 1.0 g (81%) of **12**. Amorphous solid. UV (MeOH): 272 (sh, 4.43), 266 (4.47), 231 (4.33). ¹H-NMR ((D₆)DMSO): 10.65 (s, NH); 8.58, 8.55 (2s, H-C(2), H-C(8)); 8.16 (d, 2 H o to NO₂); 7.62 (d, 2 H m to NO₂); 7.36-7.18 (m, 12 H of MeOTr); 6.84 (d, 2 H o to MeO); 6.01 (d, J = 4.7, H-C(1')); 5.67 (d, OH-C(2')); 4.95 (dd, H-C(2')); 4.41 (t, CH₂O of npeoc); 4.25 ('t', H-C(3')); 4.13 (m, CH₂OAc, H-C(4')); 3.84-3.71 (m, CH₂O-C(3'), MeO); 3.25 (m, 2 H-C(5')); 3.10 (t, CH₂C of npeoc); 1.92 (s, Me). Anal. calc. for C₄₃H₄₂N₆O₁₁ (818.8): C 63.07, H 5.17, N 10.26; found: C 62.54, H 5.04, N 10.19.

3'-O-(2-Acetoxyethyl)-5'-O-[(4-methoxyphenyl)diphenylmethyl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]-2'-O-[2-(4-nitrophenyl)ethoxysulfonyl]adenosine (13). To 12 (0.26 g, 0.32 mmol), which was co-evaporated in abs. pyridine (2 × 5 ml), 2-(4-nitrophenyl)ethoxysulfonyl chloride [33] (0.17 g, 0.67 mmol) and dry pyridine (5 ml) were added. The mixture was kept at r.t. for 4 h, then evaporated and co-evaporated with toluene (3 × 10 ml). The residue was dissolved in CHCl₃ (100 ml) and washed with sat. NaHCO₃ soln. (3 × 100 ml), the aq. phase reextracted with CHCl₃ (3 × 50 ml), the combined org. layer dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel, 2.5 × 12 cm, toluene/AcOt 1:1→toluene/AcOEt/MeOH 25:25:1): 0.28 g (85%) of 13. Amorphous solid. UV (MeOH): 267 (4.58), 235 (4.36). ¹H-NMR ((D₆)DMSO): 10.72 (s, NH); 8.60, 8.49 (2s, H-C(2), H-C(8)); 8.15 (m, 4 H o to NO₂); 7.62, 7.49 (2d, 4 H m to NO₂); 7.32-7.20 (m, 12 H of MeOTr); 6.82 (d, 2 H o to MeO); 6.40 (d, J = 3.2, H-C(1)); 6.02 (dd, H-C(2')); 4.75 (m, H-C(3')); 4.40 (t, CH₂O of npeoc); 4.19 (m, H-C(4')); 3.10 (m, CH₂O Ac); 3.90-3.70 (m, CH₂O-C(3'), CH₂O of npes); 3.71 (s, MeO); 3.38-3.20 (m, 2 H-C(5')); 3.10 (m, CH₂O of npeoc, CH₂O of npes); 1.86 (s, Me). Anal. calc. for C₅₁H₄₉N₇O₁₅ (1032.1): C 59.35, H 4.79, N 9.50; found: C 58.95, H 4.70, N 9.68.

3'-O-(2-Hydroxyethyl)-5'-O-[(4-methoxyphenyl)diphenylmethyl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]-2'-O-[2-(4-nitrophenyl)ethoxysulfonyl]adenosine (14). A mixture of 13 (0.12 g, 0.11 mmol) and catalytic amounts of K₂CO₃ in MeOH/CH₂Cl₂ 2:1 (7.5 ml) was stirred at r.t. for 2 h. The mixture was diluted with CHCl₃ (100 ml) and washed with 10% citric acid (100 ml) and sat. NaCl soln. (2 × 100 ml), the aq. phase reextracted with CHCl₃ (3 × 50 ml), the org. layer dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel, 2.5 × 10 cm, toluene/AcOEt 1:1→toluene/AcOEt/MeOH 25:25:1): 0.07 g (63%) of 14. Amorphous solid. UV (MeOH): 267 (4.59), 235 (4.37). ¹H-NMR ((D₆)DMSO): 10.69 (s, NH); 8.69, 8.50 (2s, H-C(2), H-C(8)); 8.13 ('t', 4 H o to NO₂); 7.62, 7.48 (2d, 4 H m to NO₂); 7.33-7.20 (m, 12 H of MeOTr); 6.82 (d, 2 H o to MeO); 6.38 (d, J = 2.7, H-C(1')); 6.03 (dd, H-C(2')); 4.74 (m, H-C(3')); 4.69 (t, OH); 4.40 (m, CH₂O of npeoc); 4.20 (m, H-C(4')); 3.50 (m, CH₂OH); 3.71 (s, MeO); 3.70-3.20 (m, CH₂O-C(3'), CH₂O of npes, 2 H-C(5')); 3.10 (m, CH₂C of npeoc, CH₂C of npes). Anal. calc. for C₄₉H₄₇N₇O₁₄S (990.0): C 59.45, H 4.79, N 9.90; found: C 59.01, H 4.93, N 9.52.

3'-O-(2-Acetoxyethyl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]-2'-O-[2-(4-nitrophenyl)ethoxysulfonyl]adenosine (15). A soln. of 13 (1.95 g, 1.9 mmol) in MeOH/CHCl₃ 4:1 (30 ml) containing 2% of TsOH was stirred at r.t. for 15 min. The mixture was diluted with CHCl₃ (100 ml) and washed with sat. NaHCO₃ soln. (3 × 100 ml), the aq. phase reextracted with CHCl₃ (3 × 100 ml), the combined org. layer dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel, 3 × 15 cm, CH₂Cl₂→CH₂Cl₂/MeOH 95:5): 1.35 g (94%) of 15. Amorphous solid. UV (MeOH): 266 (4.51). ¹H-NMR ((D₆)DMSO): 10.69 (s, NH); 8.71, 8.57 (2s, H-C(2), H-C(8)); 8.18-8.12 (m, 4 H o to NO₂); 7.62, 7.48 (2d, 4 H m to NO₂); 6.36 (d, J = 4.0, H-C(1')); 5.77 (dd, H-C(2')); 5.35 (t, OH-C(5')); 4.40-4.30 (m, H-C(3'), CH₂O of npeoc); 4.14 (m, H-C(4'), CH₂OAc); 3.90-3.60 (m, CH₂O-C(3'), CH₂O of npess, 2 H-C(5')); 3.08-3.14 (m, CH₂C of npeoc, CH₂C of npes); 1.98 (s, Me). Anal. calc. for C₃₁H₃₃N₇O₁₄S (759.7): C 49.01, H 4.38, N 12.91; found: C 48.71, H 4.51, N 12.49.

3'-O-(2-Acetoxyethyl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]-2'-O-[2-(4-nitrophenyl)ethoxysulfonyl]adenosine 5'-[2-(4-Nitrophenyl) N,N-Diisopropylphosphoramidite] (16). A soln. of 15 (0.40 g, 0.5 mmol), bis(diisopropylamino)[2-(4-nitrophenyl)ethoxy]phosphane [31] (0.42 g, 1.1 mmol) and 1H-tetrazole (18 mg, 0.3 mmol) in abs. MeCN (5 ml) was stirred under N₂ at r.t. for 3 h. The mixture was evaporated, the residue diluted with CHCl₃ (100 ml) and washed with sat. NaHCO₃ soln. (100 ml), the aq. phase reextracted with CHCl₃ (3 × 100 ml), the combined org. layer dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel, 2.5 × 10 cm, toluene→toluene/AcOEt 3:1): 0.33 g (59%) of 16. Amorphous solid. UV (CH₂Cl₂): 267 (4.68). ¹H-NMR (CDCl₃): 8.64, 8.34 (4s, H-C(2), H-C(8), diast.); 8.20-8.05 (m, NH, 6 H o to NO₂); 7.48-7.30 (m, 6 H m to NO₂); 6.25 (m, H-C(1'), diast.); 5.53 (m, H-C(2'), diast.); 4.52 (m, CH₂O of npe); 4.30-4.20 (m, H-C(3'), H-C(4'), CH₂OAc); 3.95-3.45 (m, CH₂O of npeoc, CH₂O-C(3'), CH₂O of npes, 2 H-C(5'), 2 Me₂CH); 3.23-2.95 (m, CH₂C of npe, CH₂C of npeoc, CH₂C of npes); 2.02 (2s, MeCO, diast.); 1.10 (m, 2 Me₂CH). ³¹P-NMR (CDCl₃): 149. Anal. calc. for C4₅H₅₄N₉O₁₇PS (1056.0): C 51.18, H 5.15, N 11.94; found: C 51.31, H 5.35, N 11.52.

3'-Deoxy-5'-O-[(4-methoxyphenyl)diphenylmethyl]-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'- {O^P-[2-(4-nitrophenyl)ethyl]} \rightarrow 5'}-3'-deoxy-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine (18). As described for 14, with 3'-deoxy-5'-O-[(4-methoxyphenyl)diphenylmethyl]-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]} \rightarrow 5'}-2'-O-acetyl-3'-deoxy-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine (17) [32] (4.4 g, 3.1 mmol) and K_2CO_3 (70 mg) in MeOH/CH₂Cl₂ 3:2 (50 ml). Workup after 3 h reaction time with CHCl₃ (4 × 200 ml), 10% citric acid (200 ml), and sat. NaCl soln. (2 × 100 ml), and purification by FC (silica gel, 4 × 14 cm, CH₂Cl₂→CH₂Cl₂/MeOH 95:5) gave 3.5 g (80%) of **18**. Amorphous solid. UV (CH₂Cl₂): 267 (4.80), 239 (sh, 4.49). ¹H-NMR ((D₆)DMSO): 10.59, 10.57 (2s, 2 NH); 8.57 (m, 2 H–C(2), 2 H–C(8)); 8.13, 8.03 (2t, 6 H *o* to NO₂); 7.59, 7.40 (2t, 6 H *m* to NO₂); 7.20 (m, 12 H of MeOTr); 6.77 (d, 2 H *o* to OMe); 6.26 (2s, H–C(1'), diast.); 5.92 (2s, H–C(1'), diast.), 5.70 (t, OH–C(2')); 6.76 (s, $\frac{1}{2}$ CH₂Cl₂); 5.51 (dd, H–C(2')); 4.68 (br. s, H–C(2')); 4.45–4.35 (m, 2 H–C(4'), 2 CH₂O of npeoc, CH₂O of npe, 2 H–C(5')); 3.69 (s, MeO); 3.19, 2.93 (m, 2 CH₂C of npeoc, CH₂C of npe, 2 H–C(5')); 2.60, 2.20, 1.98 (m, 4 H–C(3')). Anal. calc. for C₆₆H₆₂N₁₃O₂₀O· $\frac{1}{2}$ CH₂Cl₂ (1414.7): C 56.46, H 4.49, N 12.87; found: C 56.15, H 4.49, N 12.63.

3'-Deoxy-5'-O-[(4-methoxyphenyl)diphenylmethyl]-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine 2'-[2-(4-Nitrophenyl)ethyl]} \rightarrow 5'}-3'-deoxy-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine 2'-[2-(4-Nitrophenyl)ethyl] N,N-Diisopropylphosphoramidite] (19). As described for 16, with 18 (0.51 g, 0.36 mmol), bis(diisopropylamino)[2-(4-nitrophenyl)ethoxy]phosphane [31] (0.31 g, 0.78 mmol), and 1H-tetrazole (14 mg, 0.20 mmol) in MeCN (10 ml). Workup with CHCl₃ (4 × 50 ml) and sat. NaCl/NaHCO₃ soln. (50 ml) and purification by FC (silica gel, 2.5 × 8 cm, AcOEt \rightarrow AcOEt/acetone 1:1) gave 0.48 g (80%) of 19. Amorphous solid. UV (CH₂Cl₂): 267 (4.86), 240 (sh, 4.54). ¹H-NMR (CDCl₃): 8.30 (br. s, 2 NH); 8.65–8.55, 8.15–7.90 (2m, 2 H–C(2), 2 H–C(3), 8 H o to NO₂); 7.40–7.16 (m, 8 H m to NO₂, 12 H of MeOTr); 6.76 (d, 2 H o to MeO); 6.17, 6.02 (m, 2 H–C(1')); 5.43, 4.87 (m, 2 H–C(2')); 4.60–4.10 (m, 2 H–C(4'), 2 CH₂O of npeoc, 2 CH₂O of npeo; 3.90–3.80 (m, 2 Me₂CH); 3.72 (2s, MeO, diast.); 3.58–3.28 (m, 4 H–C(5')); 3.18–2.90 (m, 2 CH₂C of npeoc, 2 CH₂C of npe); 2.50–2.00 (m, 4 H–C(3')); 1.10–1.00 (m, 4 Me, diast.). ³¹P-NMR (CDCl₃): 150 (2s); -1 (2s). Anal. calc. for C₈₀H₈₃N₁₅O₁₂P₂ (1668.6): C 57.59, H 5.01, N 12.59; found: C 57.18, H 4.88, N 12.56.

3'-Deoxy-5'-O-[(4-methoxyphenyl)diphenylmethyl]-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]}→5'}-3'-O-(2-acetoxyethyl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]}→5'}-3'-O-(2-acetoxyethyl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]-2'-O-[2-(4-nitrophenyl)ethoxysulfonyl]adenosine (**20**): a) A soln. of **18** (0.28 g, 0.20 mmol), **16** (0.38 g, 0.36 mmol), and 1*H*-tetrazole (70 mg, 1.0 mmol) in abs. MeCN (5 ml) was stirred under N₂ at r.t. for 2 h. Then it was oxidized with a I₂ soln. (I₂ (500 mg) in pyridine (3 ml), CH₂Cl (1 ml), and H₂O (1 ml)) until no change of colour was detected. The mixture was stirred for 15 min, diluted with CHCl₃ (100 ml), and washed with sat. Na₂S₂O₃/NaCl soln. (3 × 100 ml). The aq. phase was reextracted with CHCl₃ (3 × 100 ml), the combined org. layer dried (Na₂SO₄), evaporated, and co-evaporated with toluene (3 × 10 ml). The residue was purified by FC (silica gel, 2.5 × 10 cm, CH₂Cl₂) → 0.0 (2m, 3 H−C(2), 3 H−C(8), 3 NH, 12 H o to NO₂); 7.40–7.10 (m, 12 H m to NO₂, 12 H of MeOTr); 6.75 (d, 2 H o to MeO); 6.20–6.00 (m, 3 H−C(1')); 5.50–5.30 (m, 3 H−C(2')); 5.67 (s, ½ CH₂Cl₂); 4.60–3.85 (m, 2 CH₂O of npeo, c H₂CO of npeos, 2 H−C(5'), 2 CH₂C of npeos, CH₂C of npeos); 2.50–2.10 (m, 4 H−C(3')); 2.00 (s, Me). Anal. calc. for C₁₀₅H₁₀₁N₂₁O₃₇P₂S·½ CH₂Cl₂(2885.6): C 53.12, H 4.31, N 12.33; found: C 52.35, H 4.48, N 12.34.

b) As described in a with 15 (0.19 g, 0.25 mmol), 19 (0.75 g, 0.45 mmol), 1H-tetrazole (0.11 g, 1.5 mmol), and abs. MeCN (6 ml). Workup after 6 h reaction time and purification by FC gave 0.52 g (87%) of 20. Amorphous solid.

3'-Deoxy-5'-O-[(4-methoxyphenyl)diphenylmethyl]-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethoxy]}→5'}-3'-Geoxy-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]}→5'}-3'-O-(2-hydroxyethyl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]-2'-O-[2-(4-nitrophenyl)ethoxysulfonyl]adenosine (21). As described for 14, with 20 (0.11 g, 46 µmol), catalytic amounts of K₂CO₃, and CH₂Cl₂/MeOH 3.2 (5 ml). Workup after 3 h with CHCl₃ (4 × 50 ml), 10% citric acid (50 ml), and sat. NaCl soln. (2 × 50 ml), and purification by FC (silica gel, 2.5 × 10 cm, CH₂Cl₂→CH₂Cl₂/MeOH 95:5) gave 0.065 g (60%) of 21. Amorphous solid. UV (CH₂Cl₂): 267 (5.02). ¹H-NMR ((D₆)DMSO): 10.68–10.55 (*m*, 3 NH); 8.58–8.42 (*m*, 3 H–C(2), 3 H–C(8)); 8.15–8.00 (*m*, 12 H o to NO₂); 7.60–7.30 (*m*, 12 H m to NO₂); 7.25–7.10 (*m*, 12 H of MeOTr); 6.78 (*d*, 2 H o to MeO); 6.48–6.12 (*m*, 3 H–C(1')); 5.95, 5.55–5.53 (*m*, 3 H–C(2')); 5.67 (*s*, ½ CH₂Cl₂): 4.74 (*m*, OH); 4.55–4.30 (*m*, H–C(3'), 2 CH₂O of npeo, 3 CH₂O of npeoc); 4.30–3.50 (*m*, CH₂OH, CH₂O–C(3'), 3 H–C(4'), 4 H–C(5'), CH₂O of npes); 3.70 (*s*, MeO); 3.15–2.90 (*m*, 2 H–C(5'), 2 CH₂Cl of npe, 3 CH₂C of npeoc, CH₂O of npeos); 2.50–2.10 (*m*, 4 H–C(3')). Anal. calc. for C₁₀₃H₉₉N₂₁O₃₆P₂. ¹/₂ CH₂Cl₂(2343.5): C 53.05, H 4.30, N 12.55; found: C 52.46, H 4.40, N 12.51.

3' - Deoxy-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]} \rightarrow 5'}-3'-deoxy-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]}} \rightarrow 5'}-3'-O-(2-hydroxyethyl)-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]2-2'-O-[2-(4-nitrophenyl)ethoxysulfonyl]adenosine (22). A soln. of 21 (14 mg, 6.0 µmol) in 80% AcOH/H₂O was stirred at r.t. for 18 h, then evaporated and co-evaporated with H₂O (3 × 5

ml) and MeOH (3 × 5 ml). The residue was purified by prep. TLC (silica gel, 20×20 cm, $CH_2Cl_2/MeOH 95:5$) to give 11 mg (90%) of **22**. Amorphous solid. UV (CH_2Cl_2): 267 (5.00). ¹H-NMR ((D_6)DMSO): 10.64–10.57 (*m*, 3 NH); 8.63–8.46 (*m*, 3 H–C(2), 3 H–C(8)); 8.14–7.98 (*m*, 12 H o to NO); 7.60–7.36 (*m*, 12 H m to NO₂); 6.36–6.14 (*m*, 3 H–C(1')); 5.79 (*s*, $\frac{1}{2}$ CH₂Cl₂); 5.86, 5.43–5.25 (*m*, 3 H–C(2')); 5.11 (*m*, OH–C(5'); 4.75 (*m*, OH); 4.54–4.46 (*m*, H–C(3')); 4.46–4.04 (*m*, 2 CH₂O of npe, 3 CH₂O of npeoc, 3 H–C(4'), 4 H–C(5')); 3.95–3.40 (*m*, CH₂OH, 2 H–C(5'), CH₂O–C(3'), CH₂O of npes); 3.14–2.95 (*m*, 2 CH₂Cl of npe, 3 CH₂C of npeoc, CH₂C of npes); 2.50–1.96 (*m*, 4 H–C(3')). Anal. calc. for C₈₃H₈₃N₂₁O₃₅P₂S· $\frac{1}{2}$ CH₂Cl₂ (2071.2): C 48.42, H 4.09, N 14.20; found: C 48.03, H 4.24, N 13.97.

3'-Deoxyadenylyl- $(2' \rightarrow 5')$ -3'-deoxyadenylyl- $(2' \rightarrow 5')$ -3'-O-(2-hydroxyethyl)adenosine Diammonioum Salt (23). After co-evaporation with dry pyridine $(3 \times 5 \text{ ml})$, 22 (8.9 mg, 4.3 µmol) was dissolved in 0.5M DBU/MeCN (1.5 ml) and stirred at r.t. for 42 h. Then the mixture was neutralized with 1M AcOH and evaporated. The residue was dissolved in H₂O (10 ml) and applied on a *DEAE-Sephadex* column A25 (2 × 40 cm) using first H₂O (200 ml), followed by a linear gradient of (Et₃NH)HCO₃ buffer (pH 7.5; 0.0 \rightarrow 0.2M) within 4000 ml. The eluated product fractions were evaporated an co-evaporated with H₂O (4 × 10 ml), sat. NH₃ soln. (3 × 10 ml), and H₂O (3 × 10 ml). The residual NH₄⁺ salts were lyophilized (H₂O): 5.2 mg (59%) of 23. Colorless powder. HPLC (4: 0.1M (Et₃NH)OAc buffer (pH 7); B: 0.1M (Et₃NH)OAc buffer/MeCN 1:1; gradient: 0 min 95% A, 5 min 95% A, 30 min 60%A): t_R 16.19 min. ¹H-NMR (D₂O): 8.09, 7.98, 7.88, 7.82, 7.74 (5s, 3 H–C(2), 3 H–C(8)); 6.00, 5.76 (2s, 2 H–C(1')); 5.68 (br. s, H–C(1')); 5.05 (s, H–C(2')); 4.80-4.00 (m, 2 H–C(2'), H–C(3'), 3 H–C(4'), 4 H–C(5')); 3.71-3.36 (m, CH₂OH, CH₂O–C(3'), 2 H–C(5')); 2.50-2.30 (m, 4 H–C(3')).

3'-Deoxy-5'-O-[(4-methoxyphenyl)diphenylmethyl]-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl- $\{2'$ - $\{O^{P}-$ [2-(4-nitrophenyl)ethyl] $\rightarrow 5'$ $-3'-deoxy-N^{6}-[2-(4-nitrophenyl)ethoxycarbonyl]adenylyl-{2'-{O^{P}-[2-{O^{P}-[2-{O^{P}-[2-{O^{P}-[2-{O}-{D^{P}-[2-{O}-{O^{P}-{O^{P}-[2-{O}-{D^{P}-[2-{O}-{D^{P}-{O}-{D^{P}-{O^{P}-{O^{P}-[2-{O}-{D^{P}-{O}-{D^{P}-{O}-{D^{P}-{O}-{D^{P}-{O}-{D^{P}-{O}-{D^{P}-{D^{P}-{D^{P}-{D^{P}-{O}-{D^{P}$ phenyl)ethyl} $\rightarrow 5'$ }-3'-O-{2-(cholest-5-en-3 β -yloxy)carbonyloxy]ethyl}-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]-2'-O-[2-(4-nitrophenyl)ethoxysulfonyl]adenosine (24). A mixture of 21 (98 mg, 42 µmol), catalytic amounts of DMAP, cholesteryl chloroformate (= cholest-5-en-3²/₉ -yl chloroformate; Fluka; 94 mg, 0.38 mmol), 1-methyl-1H-imidazole (30 µl, 0.38 mmol), and abs. CH₂Cl₂ (4 ml) was stirred at r.t. for 40 h, then diluted with CHCl₃ (20 ml), and washed with sat. NaCl soln. (3×20 ml). The aq. phase was reextracted with CHCl₃ (3×20 ml), the combined org. layer dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel, 1.5×13 cm, $CH_2Cl_2 \rightarrow CH_2Cl_2/MeOH$ 96:4): 89 mg (78%) of 24. Amorphous solid. UV (CH₂Cl₂): 267 (5.02). ¹H-NMR $((D_6)DMSO): 10.66-10.58 (m, 3 NH); 8.65-8.42 (m, 3 H-C(2), 3 H-C(8)); 8.13-7.98 (m, 12 H o to NO_2);$ 7.62-7.32 (m, 12 H m to NO₂); 7.32-7.10 (m, 12 H of MeOTr); 6.75 (d, 2 H o to MeO); 6.38-6.13 (m, 3 H–C(1')); 5.88, 5.49-5.37 (m, 3 H-C(2')); 5.22 (m, H-C(6) of chol); 4.55-4.08 (m, H-C(3'), 2 CH₂O of npe, 3 CH₂O of npeoc, CH₂OCOOchol, H-C(4'), 4 H-C(5'), H-C(3) of chol); 3.78-3.95 (m, CH₂O-C(3'), CH₂O of npes); 3.68 (s, MeO); 3.20-2.70 (m, 2 H-C(5'), 2 CH₂C of npe, 3 CH₂C of npeoc, CH₂C of npes); 2.30-0.50 (m, 4 H-C(3'), 43 H of chol). Anal. calc. for C₁₃₁H₁₄₃N₂₁O₃₈P₂S (2713.7): C 57.98, H 5.31, N 10.84; found: C 57.89, H 5.24, N 10.55.

3'-Deoxyadenylyl- $(2' \rightarrow 5')$ -3'-deoxyadenylyl- $(2' \rightarrow 5')$ -3'-O- $\{2$ -[(cholest-5-en-3 β -yloxy)carbonyloxy]ethyl $\}$ adenosine Bis(1,8-diazabicyclo[5.4.0]undec-7-enium) Salt (25). After co-evaporation with dry pyridine (3 × 5 ml), 24 (50 mg, 15 µmol) was dissolved in 0.5M DBU/MeCN (1.0 ml) and stirred at r.t. for 43 h, then neutralized with 1M AcOH, diluted with CHCl₃ (100 ml), and washed with H₂O (3 × 100 ml). The aq. phase was reextracted with CHCl₃ (2 × 50 ml), and the combined org. layer dried (Na₂SO₄) and evaporated. To the residue, 80% AcOH/H₂O (5 ml) was added, the mixture stirred at r.t. for 19 h and lyophilized, and the residue washed and centrifuged several times with AcOEt, H₂O, MeOH, and Et₂O: 28.5 mg (85%) of 25. Colorless powder. HPLC (see 23 for A and B; C: MeCN; gradient: 0 min 90% A/10% B, 20 min 0% A/100% B, 40 min C): t_R 35.40 min.

REFERENCES

- [1] H. Sigmund, W. Pfleiderer, Helv. Chim. Acta 1996, 79, 426.
- [2] W.K. Roberts, A.G. Hovanessian, R.E. Brown, M.J. Clemens, J.M. Kerr, Nature 1976, 264, 477.
- [3] A.G. Hovanessian, R.E. Brown, J.M. Kerr, Nature 1977, 268, 537.
- [4] P. Doetsch, J. M. Wu, Y. Sawada, R.J. Suhadolnik, Nature 1981, 291, 355.
- [5] C. Lee, R. J. Suhadolnik, FEBS Lett. 1983, 157, 205.
- [6] P. L. Black, R. J. Suhadolnik, E. E. Henderson, Fed. Proc. 1983, 42, 678.
- [7] D. H. Willis, W. Pfleiderer, R. Charubala, R.J. Suhadolnik, Fed. Proc. 1983, 42, 1833.
- [8] Y. Dewash, A. Gera, D.H. Willis, M. Reichman, W. Pfleiderer, R. Charubala, I. Sela, R.J. Suhadolnik, J. Biol. Chem. 1984, 259, 3482.

- [9] D.C. Montefiori, R.W. Sobol, Jr., S.W. Li, N.L. Reichenbach, R.J. Suhadolnik, R. Charubala, W. Pfleiderer, A. Modlisewsky, W.E. Robinson Jr., W.M. Mitchell, Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 7191.
- [10] W.E.G. Müller, B.E. Weiler, R. Charubala, W. Pfleiderer, L. Lesermann, R. W. Sobol, R.J. Suhaldolnik, H.C. Schröder, *Biochemistry* 1991, 30, 2027.
- [11] H.C. Schröder, R.J. Suhaldolnik, W. Pfleiderer, R. Charubala, Int. J. Biochem. 1992, 24, 55.
- [12] M. Wasner, E. E. Henderson, R. J. Suhadolnik, W. Pfleiderer, Helv. Chim. Acta 1994, 77, 1757.
- [13] R.L. Letsinger, G. Zhang, D.K. Sun, T. Ikeuchi, P.S. Sarin, Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 6553.
- [14] M.M. Reed, A.D. Adams, J.S. Nelson, R.B. Meyer Jr., Bioconjugate Chem. 1991, 2, 217.
- [15] C. MacKellar, D. Graham, D. W. Will, S. Burgess, T. Brown, Nucleic Acids Res. 1992, 20, 3411.
- [16] H. Vu, P. Singh, L. Lewis, J. G. Zendegui, K. Jayaraman, Nucleosides Nucleotides 1993, 12, 853.
- [17] H. B. Gamper, M. W. Reed, T. Cox, J.S. Virosco, A. Gall, J.K. Scholler, R.B. Meyer Jr., Nucleic Acids Res. 1993, 21, 145.
- [18] S.M. Gryaznov, D.H. Lloyd, Nucleic Acids Res. 1993, 21, 5909.
- [19] C. J. Marasco Jr., N. J. Angelino, B. Paul, B. J. Dolnik, Tetrahedron Lett. 1994, 35, 3029.
- [20] M.J. Balagopala, A.P. Ollapally, H.J. Lee, Nucleosides Nucleotides 1994, 13, 1843.
- [21] S. L. Beaucage, R. P. Iyer, Tetrahedron 1993, 49, 1925.
- [22] H.-U. Blank, D. Frahne, A. Myles, W. Pfleiderer, Liebigs Ann. Chem. 1970, 742, 34.
- [23] A. Myles, W. Pfleiderer, Chem. Ber. 1973, 165, 3327.
- [24] K. W. Pankiewicz, J. Kreminski, L. A. Ciszewski, W.-Y. Ren, K. A. Watanabe, J. Org. Chem. 1992, 57, 553.
- [25] J. Vader, H. Senger, A. de Groot, Tetrahedron 1989, 45, 2131.
- [26] V. Kohli, H. Böcker, H. Köster, Tetrahedron Lett. 1980, 21, 2683.
- [27] F. Himmelsbach, B.S. Schulz, T. Trichtinger, R. Charubala, W. Pfleiderer, Tetrahedron 1984, 40, 59.
- [28] W. Pfleiderer, F. Himmelsbach, R. Charubala, H. Schirmeister, A. Beiter, B. Schulz, T. Trichtinger, Nucleosides Nucleotides 1985, 4, 81.
- [29] W. Pfleiderer, M. Schwarz, H. Schirmeister, Chem. Scr. 1986, 26, 147.
- [30] M. Pfister, W. Pfleiderer, Nucleosides Nucleotides 1987, 6, 505.
- [31] H. Schirmeister, W. Pfleiderer, Helv. Chim. Acta 1994, 77, 10.
- [32] M. Wasner, W. Pfleiderer, Nucleosides Nucleotides 1985, 14, 1101.
- [33] C. Ziegler, J. M. Sprague, J. Org. Chem. 1951, 16, 621.